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Q)¢ will be disabled by C' and all the dynamic transitions leaving ()¢ will be preempted by
the forced transitions (¢, V(qa.gepr(e.0-09G — 7, ¢').

To prove Part 2, observe first that in view of the fact that Algorithm 1 progressively
adding live configurations to ()¢ until no further addition is possible. Therefore, a controller
will be live only if it does not exceed the configurations and invariants of C'. Assume that

e1,t1 en,ln
o — q1 — .. qn—1 — qn

is a possible run of C HM||D and the first n — 1 transitions are also possible in C' HM||C||D
but the last transition from ¢,_; to ¢, is impossible in CHM||C||D, that is, it is either
disabled or preempted by . Since (' only takes action at the boundary of some unlive
transitions, the inaction of D at that point implies that for some trajectory associated with

some continuation of this run, the invariant of C' will be violated, contradicting the hypothesis
that D is legal.
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13. Define transitions:

E¢ = {(Q7Q — 0, q/) - q, qlEQC/\(Q7Q7 q/)EE}’
Fe .= E°U {(q7 \/(q,G,q’)EDT(q,Q—QC)G — 57 q’) - q, QIEQC/\(Qvgv q/)EE}a

14. End.

It is readily seen that the configurations of the controller C consist of the set of all live
configurations with their invariants as calculated during the iteration phase of the algorithm.
The controller C has no continuous dynamics, so it is “driven” by the dynamics of the CHM.
The transitions of C are then triggered when the boundary of some unlive dynamic transi-
tions is reached. The controller thus synthesized is minimally interventive. Its interaction
with the system is restricted to the exclusive objective of preventing the system from violat-
ing the liveness constraints. The controller is augmented to allow “environment-triggered”
transitions labeled by &, which are allowed to be generated by the environment (possibly
by an additional controller) and trigger transitions in C' and hence in the CHM whenever
such transitions are not disabled or disallowed by C. C will force an (event) transition only
if otherwise the live constraint could be violated. We will illustrate the algorithm by the
following example.

Note that the controlled system C'HM||C is also an open system (but with input events
o replaced by ). Therefore, we can combine C HM||C' with other controller D as follows.
First, all the output-events & in D are replaced by & to obtain D. Then the composite

controlled system is given by
CHM||C||D.
The following theorem shows the correctness of our algorithm.

Theorem 2 If Algorithm 1 terminates in a finite number of steps, then the controller syn-

thesized is a minimally interventive live controller in the following sense.

1. CHM||C is live.

2. For any live controller D, every run of C HM||D has a corresponding run in C HM||C[|D.

Proof

Since Algorithm 1 terminates in a finite number of steps, by Theorem 1, from a live
configuration (those that are in )°), the system can always be forced to its final configurations
in bounded time. Therefore, to prove Part 1, it is sufficient to show that C H M ||C' can never

go to a configuration outside )°. This is obvious because all the event transitions leaving
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If I, = false, then
skip;

If I,, = false, then
NLC := NLC U {q};

Flse do

begin

NLC := NLC U{q};
PC = PCU{q};
E = EU{(q,pdlq, LC),q2), (g2, pd(q, LC), 1) }:

For all e = (¢,1,¢') € E — DT(q, LC) do
Ei=(E—{e}) U{(a,l,q)};

For all ¢ = (¢,1,¢') € DT (¢, LC) do
Ei=(E—{eh)U{(a,l.4): (g2, 1,4}

For all e = (¢',1,¢) € E do
Ei=(E—{ehU{(d, L q1), (¢, 1, q2)};

11. If LC # NLC, then

LC = NLC;

Go to 4;
Construction of C

12. Define vertices, events, dynamics and invariants:

Q° = LC;

Y=Y U{g:0€X};
D¢ = 0

I°:=Ilg.;

16



10.

begin

Repeat := true;
PC:=(PC - {¢})U{q1, ¢}
E:=(E—{e})U{(q1, G, q2), (q2.7Gq1), (42, 2, 4) }

For all ¢/ = (¢,1,¢") € E — {e} do

Ei=(E—A{}) Ui, 1,4"): (g2, 1,4") 5

For all ¢’ = (¢",1,q) € E do

E=(E-{H)U{(¢" la), (¢", 1, q2)};

end;

end;

If Repeat = true, go to 4;

For all (¢,G,q') € E do
G o= cl(G);
For all ¢ € PC do
I, = cl(=V6.4er G);

For all ¢ € PC do
begin
If ET(q,Q¢)# 0 or DT(¢q,Q — Q) =0, then

NLC := NLC U {q};

Flse do

Begin

Gy := V(q,69)eD1(q,L0) 5

Gy =V (q,6,4)¢DT(4,00) 5

pd(q, LC) := T (true(Gy)) < Thin(true(Gh)); ;
I, =1, Npd(q, LC);

I, =1, N=pd(q, LC);

15



Initialization

1. Set of live configurations
LC = Qy;

2. New set of live configurations

NLC :=Qy;

3. Set of pending configurations
PC:=0Q = Qr;

Iteration

4. Forall g € PC,e=(q,l,¢) € E do
E = (E —{e}) U{(q,wple, L&) N )}
5. Let

Repeat := false;

6. For all g € PCe =(q,GNag,q) € E do

begin

I, =1, NG
I, =1, NG;

If I,, = false, then
E=(E—-{e})U{(q,2,4)};
If I,, = false, then
E:=FE—{e};
Else do

14



by ¢ will be replaced by a guarded event transition wp(q,a,q¢’) A g, which in turn will be
decomposed into event and dynamic transitions.
Therefore, at the beginning of each iteration, we will normalize the CHM by performing

the following steps:

1. Replace each transition ¢ LN q' by ¢ wp(@h )N q’;

G
. GAe . — ol
2. Decompose each guarded event transition ¢ ore ¢ intoqr _o ¢ — ¢
%

3. Replace each guard G by its closure ¢l(G);

4. Replace each invariant I by the closure of the negation of the disjunction of all the

guards cl(=(G1 V ...V Gi));

When the iterations terminate (i.e., when there are no more live configurations to be
added), the resulting live configurations (and their invariant) have the following property:
Either all the possible dynamic transitions are live or there exists at least one event transition
to a live configuration that can be forced. Although the forcing can be done at any time when
the CHM is in the corresponding configuration, the minimally interventive live controller
will not force the event transition, unless a dynamic transition to a blocked configuration
(blocked dynamic transition) is about to take place. In other words, the forcing will occur
when a blocked guard of a blocked dynamic transition becomes true. We assume that the
live guards have precedence over blocked guards. Hence, the forcing will take precedence
over the blocked dynamic transition.

In summary, we present our synthesis algorithm as follows.

Algorithm 1 (Control Synthesis)
Input

e The model of the system

CHM = (Q,%,D, E, I, (qo,%0)).

o The set of final configurations )y C Q).
Output

e The controller

C = (ch ch Dcv EC? ]c7 (q87 x(c)))

13



Theorem 1 The precedent condition pd(q, Q¢) is true if and only if for any trajectory x(t)

in any run,
T(Gy(x(1))) < T(Gy(x(1))).

Proof
If pd(q,Qy) is true, that is,

max; () T(Gy(x(1))) < ming T(Gi(x(t))).

then, clearly,

(Vo (1)) T (G (1)) < T(Go(z(1))).
On the other hand, if pd(¢, Q) is not true, then
Tnaz(true(Gy)) > T (true(Gh)).

Let x(t) be the trajectory achieving T,.;,(true(Gy)). Clearly, Gy will become true earlier
that (7, along the trajectory x(t), otherwise the system will exit ¢ when G/, becomes true

and hence x(?) will not be a valid trajectory. Therefore,

(B ()T (Gy((1))) 2 T(Gi(2(1))),

a contradiction.
|
The above procedure, of identifying live configurations and calculating live subconfigu-
rations, must be repeated. This is because a configuration from which a live configuration
can be forced to be reached in bounded time, is also live. To repeat the procedure, let us
consider a transition (¢,/,¢’). Suppose that ¢’ has been split into its live subconfiguration
¢y and its unlive subconfiguration ¢5. Then transition from ¢ into ¢; (rather than into ¢5)
depends on satisfaction, upon entry into ¢', of the invariant I, (rather than ]qé). Thus,
let us define wp(q,l,q’) to be the weakest precondition under which the transition (¢,, ¢')
will not violate the invariant I, upon entry into ¢’. Since some of the shared variables that
appear in [, are possibly (re-) initialized upon entering ¢’ because x is (re-)initialized, the
condition wp(q,l,¢") can be computed from I, by substituting into I, the appropriate initial
(entry) values of all the shared variables that are also output variables of ¢’. That is, if y;
is the jth output variable of ¢’ and s; = y; is a shared variable that appears in [, then the
value of s; must be set to s; = hj(:zjg,, Ugr).
Using this weakest precondition, we can replace each transition (¢, [, ¢’) by its equivalence
(¢, wp(q,l,¢") N 1,¢"). That is, a dynamic transition with guard G will be replaced by a

dynamic transition with guard G'A wp(q,G,¢"). Similarly, an event transition triggered

12



the configuration ¢ (or equivalently, its invariant ;) into live subconfiguration ¢; and unlive
subconfiguration ¢s.
To describe this partition formally, let us define, for ¢ € @ and Q' C @), the set of event

transitions from ¢ to @Q':

ET(q,Q") = {(¢,0,¢) € E: ¢ € Q'}.

Similarly, the set of dynamic transitions from ¢ to @)’ is

DT(q,Q) ={(¢.G.¢) € £ : ¢ € Q'}.
As we said, if ET(q,Q¢) # 0 or DT(q,Q — Qy) = 0, then ¢ is live. Otherwise, we must

partition the invariant I, into the live part I, and the unlive part [, as follows.

We first consider the time at which a predicate P will become true. Thus, let T'(P(x(1)))
(=T (true(P(x(1))))) be the time at which P becomes true for the first time along the trajec-
tory (t). Since our goal is to guarantee that the liveness specification will not be violated
under any condition, we must consider the maximal and minimal values of T'(P(x(t))) when

evaluated over all possible trajectories of all possible runs. Thus, let us define

Tae(true(P)) = max,q) T'(P(x(t)))
Tin(true(P)) = mingy T'(P(x(t))).

These maximum and minimum values can be calculated from the expression of P and the

associated dynamics, which is discussed in [10].

Let

Gg = V(qG,q’)EDT(q,Qf)G

Gy = V(4,6.0eDT(0,00) G-

We define a precedent condition as

pd(q,Q¢) = Thax(true(Gy)) < Thin(true(Gy)).

We will now split the configuration ¢ into live subconfigurations ¢; and unlive subconfigura-

tion ¢z, by partitioning the invariant I, as

Iy, =1, N pd(q, Q)

Iy, = 1, A —pd(q, Qy).
Clearly, the dynamics of ¢; and ¢y and the transitions leaving and entering these configura-
tions are the same as for ¢, except that all the dynamic transitions in DT(¢1,Q) — Q)5) are
now impossible (because the dynamic transitions in DT'(¢1, Q) will take precedence). Also

the transition from ¢; to ¢z is dynamic with the guard —pd(q,Qy), and from ¢; to ¢ with
gnard pd(q,Qy).

The justification for the above partition is given in the following

11



4 Control

In this section, we study how to control a hybrid system to achieve Bounded-rate liveness.
Formally, a Controller of a CHM is a hybrid machine C that runs in parallel with the CHM.

The resultant system
CHM||C

is called the controlled or closed-loop system. The objective of control is to force the controlled
system to satisfy a prescribed set of behavioral specifications, in this case, to satisfy the
liveness constraints. A controller that achieves this objective is then said to be live.

In this paper, we shall consider only restricted interaction between the controller and the
CHM by permitting the controller to interact with the CHM only through input/output-

event synchronization. Thus, we make the following assumption.

Assumption 2 C can only control the CHM by means of input/output-event synchroniza-
tion. That is, C can only control event transitions in the CHM. Furthermore C can control
all the event transitions in the CHM. That is, all the (externally triggered) event transitions

are available to the controller.

The assumption that C can control all the event transitions in the CHM leads to no
essential loss of generality because, when some of the events are uncontrollable, we can use
the methods developed in supervisory control of discrete-event systems [19] [20] to deal with
uncontrollable event transitions.

Obviously, there may exist many live controllers with different degree of restrictiveness. A
live controller C is said to be less interventive (or restrictive) than another live controller C’
if every run permitted by C” is also permitted by C. A live controller is said to be minimally
interventive if it is less interventive than any live controller. In most cases, we are interested
in the minimally interventive live controller.

To synthesize such a controller, we would like to find all the configurations from which
the system can be forced to reach the final configurations @) s in bounded time (we call these
configurations live). We start with all the neighboring configurations of @; (that have at
least one transition leading to Q¢). For any neighboring configuration ¢, if it has an event
transition leading to @)y, then clearly ¢ is live. If no such event transitions exist, then we
must consider all the dynamic transitions leaving ¢. If all the dynamic transitions go to )y,
then ¢ is again live. Otherwise, some of these dynamic transitions go to )y. We take the
disjunction of their guards and denote it ;. The remaining dynamic transitions do not go
to Q5. We denote the disjunction of their guards by Gj. Clearly, ¢ will be live if and only

if G, is guaranteed to become true before G, becomes true. This gives a way to partition

10



A still weaker definition of liveness is given by

Definition 3 (Finite-time liveness for closed systems)
A closed system is finite-time live if every possible run reaches its set of final configurations

from the initial configuration in finite time. |

Clearly, it a closed system is bounded-time live or finite-time live, then it can always reach
its set of final configurations from any (reachable) configuration of the system in bounded
or finite time, respectively.

The runs of open systems may depend on input events to be triggered by the environment.
Thus, we cannot insist that open systems reach their final configurations in fixed, bounded
or finite time without considering input events. Therefore, the liveness definitions need to

be modified as follows.

Definition 4 (Fized-time liveness for open systems)
For a fixed time 7', an open system is T-live if every possible run can be forced (by the
environment or user) to reach its set of final configurations from the initial configuration

within 7" units of time. ]

Definition 5 (Bounded-time liveness for open systems)
An open system is bounded-time live if there exists a finite bound 7' such that every
possible run can be forced (by the environment or user) to reach its set of final configurations

from the initial configuration within 7" units of time. |

Definition 6 (Finite-time liveness for open systems)
An open system is finite-time live if any run of the system can be forced (by the environ-

ment or user) to reach its set of final configurations in finite time. |

Clearly, if a system is bounded-time live, then there exists an infimal time bound T},
such that for all 7" > T, ¢, the system is T-live.
In the present paper we shall consider only hybrid-machines that satisfy the following

Assumption 1 The dynamics described by f, and h, has the following properties: (1)
hy(x4,uy) is a linear function; and (2) f,(x,, u,) is bounded by a lower limit vé: and an upper
LU

limit véj; that is, the only information given about f,(w,,u,) is that f,(w,,u,) € [v7,0)]. =

Under this assumption, we consider only rate bounded hybrid machines in which all the
rates are bounded by closed intervals. Such systems are either bounded-time live or not live.
Therefore, in the remainder of the paper, by liveness we shall simply mean bounded-time
liveness. As we stated in the introduction, fixed time liveness need not be considered further,

because it can always be viewed as a special case of safety.



where

Q! x Q% x ... x Q",
= Yluxiu..uxn,

1 &L
I

D = {(2q,Yg: gy [y hg) 1 ¢ =< qz'llqu'zzv---aqzl >c Q' x Q% x .. xQ"}
combines all the dynamics of qu,j =1,2,...,n,

1) is defined as above, and

1 = {]q%1 A 1%22 A A ]qlnn <Gl gl >E QT X QP x L x QM)

(qovxo) = (< qqugvvqg >,[$(1),$(2),...,$g]).

Therefore, we can define a run of a CHM in the same way as that of an EHM. It can also be
easily verified that in view of the fact that the component EHMs are completely guarded, so
is the composite CHM.

3 Liveness

In our earlier work [10] [12] [11], we developed a synthesis method for designing a safety
controller that guarantees the controlled system never to exit a set of specified legal (safety)
configurations. Furthermore, the controller was designed to be minimally interventive in the
sense that it interferes with the system’s operation only when safety violation is otherwise
inevitable.

In this paper, our objective is to synthesize a liveness controller. To define liveness, we
first specify a set of marked or final configurations ¢y C () in the CHM. Liveness is then
regarded to be the ability to reach this set final configurations as discussed below.

To define liveness formally, we must classify hybrid systems into closed systems and
open systems. A closed system accepts no input events from the environment, and all its
transitions are triggered dynamically in its EHMs. Therefore, in the CHM model of a closed
system, all transitions are dynamic transitions. On the other hand, an open system accepts

input events from its environment, and its CHM model includes event transitions.

Definition 1 (Fized-time liveness for closed systems)
For a fixed time T, a closed system is T-live if every possible run reaches its set of final

configurations from the initial configuration within 7" units of time. |

A weaker version of liveness is the following

Definition 2 (Bounded-time liveness for closed systems)
A closed system is bounded-time live if there exists a finite bound 7' such that every
possible run reaches its set of final configurations from the initial configuration within 7T

units of time. ]



EHMs. A shared variable s; can be the output of at most one EHM. The set of shared
variables defines a signal space S = {[s1, s2,..., 8] € R™}.

Transitions are synchronized by an input/output synchronization formalism. That is, if
an output-event @ is either generated by one of the EHMs or received from the environment,
then all EHMs for which o is an active transition label (i.e., o is defined at the current
vertex with an absent guard or a true guard) will execute g (and its associated transition)
concurrently with the occurrence of . A specific output-event can be generated by at most
one FHM.

To describe the behavior of

CHM = EHM'||EHM?||..||EHM™,

we define a configuration of the CHM to be

q=< qZ'llquZQV"qu:l >€ Ql X Q2 X ..o X Qn7

where Q7 is the set of vertices of K H M’ (components of the EHMs are superscripted).

A transition

1 2 ! 1 2
<q¢17q2'27---7q31 > <q2'/17q2'/27---7q;7n >

of a CHM is a triple, where ¢ =< q}l,qi,...,qﬁl > is the source configuration, ¢ =<

4, G5 r g, > the target configuration, and [ the label that triggers the transition. I

5

can be either an event, or a guard becoming true’. Thus, if [ = o is an event (generated

by the environment), then either qflj = qu if o is not active at qf], or qflj is such that
(qi,g — o, qu’g’xgﬂ,, ) is a transition (edge) in £7. On the other hand, if | = G is a guard,

7

then there must exist a transition (¢, G — o, 4, J}ST ) in some FHM™, and for j # m,

m

qf/ = qf]. The event o’ (generated as an output event) can trigger a successor event transition
J

0

o ) is a transition in L.
1
2

if ¢’ is active at some vertex qfk (j # m); that is (qfk,a_’ — o ¢k x
k

Note that for simplicity, we do not specify the output events and Initial conditions, since
they are defined in the EHMs.

The transitions are assumed to occur instantaneously, and concurrent vertex changes in
parallel components are assumed to occur exactly at the same instant (even when constituting
a logically triggered finite chain of transitions). We shall always assume that only a finite
chain of instantaneously triggered transitions can occur in succession.

Based on the above definition, a CHM can be viewed as the same object as an EFHM:

CHM =(Q,%,D,E, I, (qo,x0))

>This follows from the decomposition of guarded event transitions into dynamic and event transitions as

described previously.



e The trajectory of the run is the sequence of the vector time functions of the (state)

variables:

Tgoy Tgyr Tapy oee
where x,, = {x,, (1) : t € [ti, tip1)}-
e The path of the run is the sequence of the vertices.
e The input trace of the run is the sequence of the input-events.
e The output trace of the run is the sequence of the output-events.

To facilitate our ensuing exposition, we will standardize EHMs as follows. Recall that

our model allows guarded event transitions of the form

Gre
q—4q.
However, since for the transition to take place the guard must be true when the event is
triggered, a guarded event transition can be decomposed into
G
— o ,
GO _g 92 — G,
%
where ¢ has been partitioned into ¢; and ¢z, with I,, = I, A =G and I,, = I, A G*. The
dynamics of ¢; and ¢, and the transitions leaving and entering these vertices are the same
as for ¢, except that the transition (¢1,0,¢’) is now impossible. It follows that a guarded
event transition can be treated as a combination of a dynamic and an event transition.
Thus, in computations, we shall only need to consider two types of transitions: (1) dynamic
transitions, that are labeled by guards only, and (2) event transitions, that are labeled by
events only.
A composite hybrid machine consists of several elementary hybrid machines running in

parallel:
CHM = EHM'||EHM?||...||EHM™.

Interaction between EHMs is achieved by means of signal transmission (shared variables)
and input/output-event synchronization (message passing) as described below.
Shared variables consist of output signals from all EHMs as well as signals received from

the environment. They are shared by all EHMs in the sense that they are accessible to all

“Since we use only closed invariants and guards, as described earlier, if I,,, I,, or =G are not closed, we

will take their closure.



If o7 is absent, then no output-event is transmitted. If :1;2, is absent (or partially absent),
then the initial condition is inherited (or partially inherited) from z, (assuming x, and
xy represent the same physical object, and hence are of the same dimension). We
often write the transition as ¢ ore q or (¢,G Na,q')if o’ and :1;2, are either absent or

understood.

If o is absent, then the transition takes place immediately upon G becoming true. Such
a transition is called a dynamic transition. If G is absent, the guard is always true
and the transition will be triggered by the input-event g. Such a transition is called
an event transition. When both G and o are present, the transition is called a guarded

event transition.

o [ = {l, : g € Q} is a set of invariants. For each ¢ € @, [, is defined as [, =
c(=(Gy V...V Gy)), where Gy, ..., (), are the guards at ¢, and where ¢l(.) denotes set

closure?.

e (qo, o) denote the initialization condition: ¢ is the initial vertex, and x4, () = wo.

The invariant I, of a configuration ¢ expresses the condition under which the EHM is permit-
ted to reside at ¢; that is, the condition under which none of the guards is true. In particular,
from the definition of I, as I, = ¢l(=(G1 V ... V G})), it follows that each of the vertices of
the EHM is completely guarded. That is, every invariant violation implies that some guard
becomes true, triggering a transition out of the current vertex. (It is, in principle, permitted
that more than one guard become true at the same instant. In such a case the transition
that will actually take place is resolved nondeterministically. It is further permitted that,
upon entry into ¢’, one or more of the guards at ¢’ be already true. In such a case, the
EHM will immediately exit ¢’ and enter a vertex specified by one of the true guards. Such
a transition is considered instantaneous.)

The EHM runs as follows: At a vertex ¢, the continuous dynamics evolves according
to d, until either a dynamic transition is triggered by a guard becoming true, or an event
transition is triggered by the environment through an input event, provided the associated
guard is either absent or true).

A run of the EHM is a sequence

q e1,t1 q e2,t2 q e3,t3
0 > g1 > {42 ?

where e; is the ¢th transition and #;(> ;1) is the time when the i¢th transition takes place.

For each run, we define its trajectory, path and trace as follows.

3We shall always insist (especially during computations), that invariants and guards be derived as closed

sets by taking their closure.



2 Hybrid Machines

In this section we briefly review the hybrid-machine formalism as described e.g. in [12]. An

elementary hybrid machine is defined as a tuple
EHM = (szvaEvjv (qovxo))v

whose elements are defined as follows:

e () is a finite set of vertices.

e Y is a finite set of event labels. An event is an input event, denoted by o (underline),
if it is received by the EHM from its environment; and an output event, denoted by &

(overline), if it is generated by the EHM and transmitted to the environment.

o D = {d, = (2g,yg,uq, [3-hy) : ¢ € Q} is the dynamics of the EHM, where d,, the

dynamics at the vertex ¢, is given by:

Ty = fq(xqvuq)a

Yq = hq(xqv uq)a

with z,, u,, and y,, respectively, the state, input, and output variables of appropriate
dimensions. f, is a Lipschitz continuous function and h, a continuous function. (A
vertex need not have dynamics associated with it; that is, we permit d, = §J, in which
case we say that the vertex is static.) Note that the dynamics, and in particular the

dimension of z,, can change from vertex to vertex.

o £={(¢,GNa— 0d,¢,22):q,q € Q} is a set of edges (or transition-paths), where
q is the vertex exited, ¢’ is the vertex entered, o is the input-event, ¢’ the output-
event. (& is the guard, formally given as a Boolean combination of inequalities of the
form ¥;a,5,>C; or ¥;a;5,<C;, where the s; are shared (signal) variables, to be defined
shortly, and the a; and C; are real constants. Finally, :1;2, is the initialization value for

x, upon entry to ¢'.

(¢, GNa — o, ¢, :1;2,) is interpreted as follows: If G is true and the event o is received
as an input, then the transition to ¢’ takes place at the instant o is received!, with
the assignment of the initial condition x,(tg ) = :1;2, (where g, denotes the time at
which the vertex ¢’ is entered and :1;2, is a constant vector?). The output-event o is

transmitted at the same time.

'If ¢ is received as an input while G is false, then no transition is triggered.
ZMore general assignments of the initial conditions such that J:S, is a function of z, can also be introduced

without much difficulty.



where system dynamics is rate-bounded and legal guards are conjunctions or disjunctions of
atomic formulas in the dynamic variables (of the type S < C, S > C, S <C,or S > C).

The control problem that we focus on in the present paper, is the synthesis of a super-
visory controller, where the objective is to guarantee that the system satisfies a set of legal
specifications. Legal specifications are traditionally partitioned into safety specifications that
state what the system must be prevented from being able to do, and liveness specifications
that state what the system is required to do. A typical safety specification is to ensure that
the system will never enter a specified set of illegal configurations. A typical liveness speci-
fication is to ensure that every run of the system will reach a set of marked configurations,
that represent task completion.

The synthesis of legal safety controllers for rate-bounded hybrid machines, was inves-
tigated in [10] [11] [12]. Among all legal controllers, we were particularly interested in
minimally restrictive (or minimally interventive) ones, that allow the maximal possible set
of legal behaviors to survive. Synthesis algorithms for minimally interventive controllers were
developed, and the problem of system viability was examined. Synthesis of safety controllers
for hybrid systems was also studied in [9] [22].

In the present paper we present an initial investigation of synthesis of liveness controllers
for hybrid machines. To this end we define open hybrid machines (as opposed to closed hybrid
machines) as systems that can interact with the environment through event synchronization
and can therefore be “driven” to their marked configurations by the user (controller). In view
of obvious timing constraints, liveness specifications for hybrid systems must be associated
with explicit timing constraints. Thus, we may require that for a specified time limit, every
run reach a marked configuration within that time limit. We call such a specification a
fized-time liveness specification. Alternatively, a more relaxed specification may be that, for
some (unspecified) global time bound, every run of the system reach a marked configuration
within that time bound. We call this the bounded-time liveness specification. Finally, the
least restrictive liveness requirement is that every run reach a marked configuration within
a finite time limit (but we do not insist on the existence of a global time bound for all runs).
We call this the finite-time liveness specification.

It is not hard to see that a fixed time liveness specification can be readily translated into
a safety requirement, by conjoining a global clock to the system, and calling “unsafe” each
configuration whose clock value exceeds the (specified) time bound. Therefore, the fixed
time liveness case can be dealt with algorithmically, just as a control problem with safety
specifications. In contrast, the bounded time liveness controller must be handled differently,
and this is the focus of the present paper, where we present a synthesis algorithm for a

minimally interventive controller with bounded-time liveness specifications.



Abstract

Liveness in hybrid systems is defined as the ability of the system to complete a
specified task under all operating conditions and for all possible runs. Liveness is
classified in the present paper into fized-time, bounded-time, and finite-time liveness.
We present an algorithm for synthesis of minimally-interventive controllers that achieve

liveness in rate-bounded hybrid systems.

Keywords: Hybrid systems, liveness, control synthesis

1 Introduction

Hybrid systems are dynamical systems in which discrete and continuous behaviors coexist
and interact [1] [3] [6]. Such systems frequently arise, for example, from computer aided con-
trol of continuous (and discrete) processes in manufacturing, communication networks, flight
control systems, traffic control, industrial process control, and the like. Various formalisms
have been proposed in the literature for the mathematical description of these systems [6]
[3] [1] [12]. Among these, the formalism of hybrid-automata [1], which augments the state-
machine framework with dynamics to capture timing constraints and continuous dynamics,
gained fairly wide acceptance. A formalism related to hybrid automata for modeling hybrid
systems, called hybrid machines, that differs from the latter in some substantial detail [12],
was developed in [10] [11] [12] to capture open hybrid systems that interact with their envi-
ronment both by sharing signals (i.e., by transmission of input/output data), and by event
synchronization (through which the system is reconfigured and its structure modified).

Control of hybrid systems can be achieved by employing both interaction mechanisms,
to modify and restrict system’s behavior. This flexibility adds significantly to the potential
control capabilities of hybrid system (as compared to either discrete-event or continuous
systems), but clearly makes the problem of controller design much more difficult. Indeed,
in view of the obvious complexity of hybrid control, even the question of what are tractable
and achievable design objectives, is far from easy to resolve. Thus, most attention to date,
in control of hybrid systems, has focused either on continuous aspects (i.e., signal-sharing)
or discrete aspects (i.e., event-synchronization) but not both.

In the present paper we examine the control problem for a class of composite hybrid
machines (CHMs) that consist of the concurrent operation (employing synchronous compo-
sition) of elementary hybrid machines (EHMs), that allows both signal sharing and event
synchronization. A controller can then be coupled with the plant by means of synchronous
composition. We confine our attention to controllers that interact with the system only

through event synchronization. We further restrict ourselves to a special class of CHMs,
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